Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Lucas B Naves

University of Minho, Portugal

Title: Polycaprolactone blended with Linear and Branched Polyethynimines scaffolds for skin regeneration treatment – In vitro study

Biography

Biography: Lucas B Naves

Abstract

Skin regeneration is a huge issue over the last few decades. As a result of burns, trauma, diabetes and several other diseases, skin grafts are needed, aiming the regeneration of the injured body site. In this paper, we present a new alternative approach, a comparison of linear and branched Polyethylenimine. This research presents the viability and biocompatibility of LPEI  and BPEI  loaded with polycaprolactone (PCL) scaffolds.

Figure: MTT assay showing the biocompatibility of all the scaffolds with Human Dermal Fibrblast cells.

SEM images show that the scaffolds developed sized between 74± 419 nm. Contact angle assay demonstrated high hydrophobicity for all mats, which could be overcome by surface modification, plasma treatment, helping the hydrophilicity of the mats, providing excellent of the cells adhesion to the surface of the scaffolds. We demonstrate the biocompatibility of the scaffolds developed by electrospinning techniques, followed by in vitro tests with Human Dermal Fibroblast  (HDF), by using   MTT assay to determine the biocompatibility with the cells, and the Sirius red collagen to determine the relies profile after six days of cells incubation. The results have shown that all the scaffolds developed to have good cells adhesion,  cell biocompatibility for HDF, good collagen release profile for all mats, increased release on the day 10. This primary in vitro study suggest that the mats developed may increase in the skin regeneration process, therefore can be an emerging technology for skin regeneration.