Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ying Wang

Ying Wang

Caner Research Institute, Southern Medical University, China

Title: Targeted nanoparticles was involved in overcoming MDR induced by heterogenous cancer cells

Biography

Biography: Ying Wang

Abstract

Heterogenous cancer cells possess cancer multidrug resistance (MDR) due to their relative quiescence and ABC-transporter expression. Heterogenous cancer cells can be detected by an Rh123 exclusion assay for identifying Rh123low population. Several attempts to explore nanoparticles (NPs) based strategies have involved overcoming cancer MDR due to their ability for bypassing MDR drug-efflux pump. Targeted NPs have been shown to have the potential to reverse MDR-mediated drug efflux, indicating active targeted effect and endocytic effect of NPs which correlates with the drug-efflux pump mechanism play a key role in overcoming MDR. In the present study, we fabricated targeted nanoparticles entrapped with Rh123 (Rh123 NPs) to investigate the endocytic effect and targeted effect of these nanoparticles on heterogeneous Rh123low population.

We found the Rh123low population stained by Rh123 NPs exhibited similar heterogeneity to that stained by Rh123. In addition, the ABC-transporters of Rh123low population did not contribute to the uptake of free Rh123 or Rh123 NPs. Interestingly, ABC-transporters in the Rh123low population stained by Rh123 were possibly responsible for Rh123 efflux, while Rh123 NPs were not susceptible to ABC-transporters in the Rh123low population. It was explained that the synergistic effect of the targeted NPs was beneficial for Rh123 NPs to avoid the dye-efflux pump in heterogenous cancer cells. Compared with the individual endocytic effect, the targeted effect played more important role for overcoming the drug efflux pump of the ABC-transporter in heterogenous cells.