Meet Inspiring Speakers and Experts at our 3000+ Global Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conferenceseries Ltd: World’s leading Event Organizer

Conference Series Conferences gaining more Readers and Visitors

Conference Series Web Metrics at a Glance

  • 3000+ Global Events
  • 25 Million+ Visitors
  • 25000+ unique visitors per conference
  • 70000+ page views for every individual conference

Unique Opportunity! Online visibility to the Speakers and Experts

Renowned Speakers

Branislav Vlahovic

Branislav Vlahovic

NSF Center of Research Excellence in Science and Technology USA

Abraham J. Domb

Abraham J. Domb

Hebrew University of Jerusalem Israel

Alireza Heidari

Alireza Heidari

American International Standards Institute (AISI) USA

N. Udupa

N. Udupa

Manipal University,India India

Istvan Toth

Istvan Toth

Chair in Biological Chemistry Australia

Xudong Huang

Xudong Huang

Co-director USA

Roland Chisin

Roland Chisin

Hadassah Medical Center Israel

Nano Medicine 2018

Sessions/Tracks

                         Nano Medicine 2018 is a global annual event. This Nano Medicine 2018 brings together scientists, researchers, business development managers, CEOs, directors, IP Attorneys, Regulatory Officials and CROs from around the world. The passage of approval for Nano Medicine finds much requirement for discussion also focussing the latest developments in the field of Nano Medicine and Nanoparticles

Theme: Breakthroughs in Pharmaceutical Nanotechnology: Advancements and Challenges.

Track 1: Nanoparticles and Nanomedicine

Nanomedicine is a branch of medicine that applies the knowledge and tools of nanotechnology to the prevention and treatment of disease. Nanomedicine involves the use of nanoscale materials, such as biocompatible nanoparticles and nano robots, for diagnosis, delivery, sensing or actuation purposes in a living organism. Nanoparticles with ~100 nanometers have been widely used to improve the drug accumulation, internalization and therapeutic efficacy. The physicochemical and biological properties of the nanoparticles can also be finely adjusted by tailoring their chemical properties, sizes, shapes, structures, morphologies, and surface properties. Nanomedicine is the medical application of nanotechnology. Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials.

Track 2: The Evolution of Nanomedicine with the Re-Evolution of Nanotechnology

Nanotechnology seems to have gained a widespread interest in the recent years. Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. Nanomedicine introduces nanotechnology concepts into medicine and thus joins two large cross disciplinary fields with an unprecedented societal and economical potential arising from the natural combination of specific achievements in the respective fields.

Track 3: Computational Studies in Nanoparticles

The computational studies in nanoparticles have demonstrate that there has been considerable progress in nano- and biotechnology over the last several years. However, several key challenges have also become apparent, including the need for a better understanding of nanoparticle behaviour in vivo and the development of more effective nanoparticle therapeutics. Computational efforts are becoming an important tool in addressing both of these challenges, as well as in generally facilitating and accelerating nanotechnology-based translational research. The nanoinformatics has arisen as a new research area that covers raw data management, analysis of the data derived from biomedical applications and simulation of nanoparticle interactions with biological systems depicts the integration of biology, nanotechnology and informatics to form the basis for computational nanomedicine.

Track 4: Toxicology of Nanoparticles

Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Different types of cell cultures, including cancer cell lines have been employed as in vitro toxicity models. Considering the potential applications of NPs in many fields and the growing apprehensions of FDA about the toxic potential of nanoproducts, it is the need of the hour to look for new internationally agreed free of bias toxicological models by focusing more on in vivo studies. The rapid expansion of nanotechnology promises to have great benefits for society, yet there is increasing concern that human and environmental exposure to engineered nanomaterials may result in significant adverse effects. The system was developed for nanotoxicity assessment at single and multiple cell levels which can measure and compare the microscopic and macroscopic effects of nanoparticles interaction with cells, without interference from neighbour cells' cues and also overall integrative effects produced by nanoparticles and cell–cell communication.

Track 5: Emerging Nanomedicine

Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies. Recent evaluation of HIV patient groups have shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.

In a four-year study conducted on the mouse model in advanced breast cancer metastasis in the eye's anterior chamber, the new nanoparticle not only killed tumour cells in the eye, but also extended the survival of experimental mice bearing 4T1 tumors, a cell line that is extremely difficult to kill. "Previous monotherapies have not extended the lifetimes of mice bearing this type of tumour".

 Track 6: Smart Drug Delivery Technology

Some smart drug delivery platform is based on neutral phospholipid nanoliposomes. Where classic liposomes modalities have had manufacturing problems involving sizing, uniformity, loading, storage, and enhancement compatibility, which can be overcome by employing true nanotechnology to build liposomes upon discrete self-assembling DNA scaffolds. The smart drug delivery system is used for delivering drugs to the host. Biological information detected by biological sensors is analyzed and the drug delivery system is actuated to deliver the drug based on the information. MEMS or NEMS technology based drug pumps, micro-pumps, micro-needles, micro-osmotic pumps, and nano-pumps are utilized for smarter drug delivery. One of the concerns these days about self-assembling nanotechnology is that it is so advanced beyond the current drug paradigm that it becomes problematic from a regulatory point of view. While there is currently no drug treatment delivered directly into these types of cancers.

Track 7: Design & Characterization of Nano Drug Systems

Recent years have witnessed the rapid development of inorganic nanomaterials for medical applications. At present, nanomedicines-nanoparticles (NPs) destined for therapy or diagnosis purposes-can be found in a number of medical applications, including therapeutics and diagnosis agents .Pushing the limits of nanotechnology towards enhanced nanomedicines will surely help to reduce side effects of traditional treatments and to achieve earlier diagnosis. The interplay between engineered nanomaterials and biological components is influenced by complex interactions which make predicting their biological fate and performance a nontrivial issue. We hope that both early-stage and experienced researchers will find it valuable for designing nanoparticles for enhanced bio-performance. Nanoemulsions have attracted great attention in research, dosage form design and pharmacotherapy. This is as a result of a number of attributes peculiar to nanoemulsions.

Track 8: Nanoparticles as Precise Drug Delivery Systems

With the remarkable development of nanotechnology in recent years, new drug delivery approaches based on the state-of-the-art nanotechnology have been receiving significant attention. Nanoparticles, an evolvement of nanotechnology, are increasingly considered as a potential candidate to carry therapeutic agents safely into a targeted compartment in an organ, particular tissue or cell. These particles are colloidal structures with a diameter smaller than 1,000 nm, and therefore can penetrate through diminutive capillaries into the cell’s internal machinery. This innovative delivery technique might be a promising technology to meet the current challenges in drug delivery. The different types of nanoparticles drug delivery systems under investigation and their prospective therapeutic applications, and also present a closer look at the advances, current challenges, and future direction of nanoparticles drug delivery systems.

Track 9: Polymer Nanoparticles for Nanomedicines

The use of nanoscale materials and processes to address human disease is perhaps the most promising, considering that most complex downstream symptoms of disease are initiated by molecular level phenomena. Nanomedicine is defined as biological and medical intervention at the nanometer scale for the treatment, diagnosis, and increased understanding of biology and disease. Tremendous advances in the area of polymer synthesis and self-assembly have given rise to a new toolbox of engineered nanosized delivery and diagnostic agents that permit systemic and local administration, circulation in the bloodstream, and uptake and diffusion at the cellular and subcellular level. The UF aims to enhance research capabilities in this field by focusing specifically on the synthesis. Characterization and evaluation of smart/stimuli-responsive polymeric nanomedicines. Expanding focus in the area of biologically-relevant polymers is compelling given that the Department of Chemistry has a longstanding history of excellence in the more traditional areas of polymer chemistry.

Track 10: Nano Medicine Industry and Market Analysis

This industry report analyses the global markets for Nanomedicine across all the given segments on global as well as regional levels presented in the research scope. The study provides historical market data for 2013, 2014 revenue estimations are presented for 2015 and forecasts from 2016 till 2025. The study focuses on market trends, leading players, supply chain trends, technological innovations, key developments, and future strategies. With comprehensive market assessment across the major geographies such as North America, Europe, Asia Pacific, Middle East, Latin America and Rest of the world the report is a valuable asset for the existing players, new entrants and the future investors. The Global Nanomedicine Market is poised to grow at a CAGR of around 16.6% over the next decade to reach approximately $1.3 trillion by 2025.This industry report analyses the global markets for Nanomedicine across all the given segments on global as well as regional levels presented in the research scope.

Track 11: Research and Development of Nanomedicine

Nanomedicine has been developing rapidly in recent years, particularly in the development of novel nano tools for medical diagnosis and treatment. For instance, a new trend is becoming prevalent in developing nanosystems for simultaneous tumour diagnosis and therapy. A new terminology "theranostics" has been frequently used and applied in pre-clinical research and trials. A nanosystem can simultaneously achieve both cell targeted in vivo imaging and photothermal treatment of cancer. While achieving concurrent high spatial and temporal resolution of the lesions via cell targeting; special non-evasive treatments are implemented at the same time by various means, such as localized drug release, hyperthermia, and photo-thermal therapy. Inspired by these challenging problems in biomedical fields, the development of the nanotechnologies will be the key in addressing some of the critical issues in medicine, especially in early cancer diagnosis and treatment.

Track 12: Nano Pharmaceutical Medicine

The term “Nano” became tantamount to “cutting-edge” and was quickly embraced by the pharmaceutical science community. The new concept of nanomedicine arose from merging nanoscience and nanotechnology with medicine. Pharmaceutical scientists quickly adopted nanoscience terminology, thus “creating” “Nano pharmaceuticals”. Moreover, just using the term “nano” intuitively implied state-of-the-art research and became very fashionable within the pharmaceutical science community. Formulation of Nano pharmaceuticals containing active extracts obtained from medicinal plants. In physiological conditions, the interactions between blood platelets and endothelial cells play a major role in vascular reactivity and haemostasis. By contrast, increased platelet activation contributes to the pathogenesis of vascular pathology such as atherosclerosis, thrombosis, diabetes mellitus, hypertension and carcinogenesis. The rapid developments in nanostructured materials and nanotechnology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of biomarkers, cancer diagnosis, cancer therapy, and imaging.

 Track 13: Nanoparticle Interaction

Particle–particle interactions in physiological media are important determinants for nanoparticle fate and transport. Herein, such interactions are assessed by a novel atomic force microscopy -based platform. Industry-relevant CeO2, Fe2O3, and SiO2 nanoparticles of various diameters were made by the flame spray pyrolysis (FSP)-based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES). The nanoparticles were fully characterized structurally and morphologically, and their properties in water and biological media were also assessed. The nanoparticles were attached on AFM tips and deposited on Si substrates to measure particle–particle interactions. Nanoparticle interactions in solution affect their binding to biomolecules, their electronic properties, and their packing into larger crystals. However, the theories that describe larger colloidal particles fail for nanoparticles, because the interactions do not add together linearly. Nanoparticle interactions are often described by classical colloidal theories developed for µPs.

 Track 14: Nanomedicine Ethical Issues

As the science and technology of nanomedicine speed ahead, ethics, policy, and the law struggle to catch up. It is important to proactively address the ethical, social and regulatory aspects of nanomedicine to minimize its adverse impacts on the environment and public health and to avoid a public backlash. In the next 10–15 years, nanotechnology is likely to revolutionize the practice of medicine and have a significant impact on human health. Nanotechnology is already contributing to the development of new drugs, biologics, and medical devices and the augmentation of existing therapeutics. Over 200 companies are involved in nanomedicine research and development. The U.S. Food and Drug Administration has approved nine different types of therapies that employ nanoscale materials, including products used for medical testing and imaging, drug delivery, wound healing, and bone and tissue repair. Discoveries and innovations in nanomedicine have occurred at a breath taking pace in just a short time, uses of nanotechnology in medicine have moved from laboratory testing, to clinical trials, to medical applications.

Track 15: Pharmaceutical Formulations

Formulation studies involve developing a preparation of the drug which is both stable and acceptable to the patient. For orally administered drugs, this usually involves incorporating the drug into a tablet or a capsule. It is important to make the distinction that a tablet contains a variety of other potentially inert substances apart from the drug itself, and studies have to be carried out to ensure that the encapsulated drug is compatible with these other substances in a way that does not cause harm, whether direct or indirect. Formulation studies then consider such factors as particle size, polymorphism, pH, and solubility, as all of these can influence bioavailability and hence the activity of a drug. The drug must be combined with inactive ingredients by a method which ensures that the quantity of drug present is consistent in each dosage unit e.g. each tablet. The dosage should have a uniform appearance, with an acceptable taste, tablet hardness, or capsule disintegration. By the time phase III clinical trials are reached, the formulation of the drug should have been developed to be close to the preparation that will ultimately be used in the market.

Track 16: Applied Pharmaceutical Science

Pharmacy is the science and technique of preparing and dispensing drugs. It is a health profession that links health sciences with chemical sciences and aims to ensure the safe and effective use of pharmaceutical drugs. A theory relating chemical structure to pharmaceutical activity emerged from the interplay of experimental results from animal and human tests using vaccines, antitoxins, and antibodies with chemical knowledge about dyes and their molecular structures. Although pharmacology is essential to the study of pharmacy, it is not specific to pharmacy. Pharmacoinformatics is considered another new discipline, for systematic drug discovery and development with efficiency and safety. The progressively more important role of the chemist and chemical science in pharmaceuticals in the early-20th century is mirrored in the history of the American Chemical Society's Division of Medicinal Chemistry.

About Conference


International Conference on Nano Medicine and Nanoparticles, (Nano Medicine 2018) scheduled to be held during April 18-19, 2018 Las Vegas, USA. This Nano Medicine 2018 Conference includes a wide range of Keynote presentations, Oral talks, Poster presentations, Symposia, Workshops, Exhibitions and Career development programs. The conference invites delegates from Leading Universities, Pharmaceutical companies, Formulation Scientists, Medical Devices, Researchers, Health care professionals, students, business delegates and Young researchers across the globe providing a better podium, interconnecting the latest research, technological developments in the arena as well as therapeutic aspects. Participating at Nano Medicine 2018 International conference will be an excellent opportunity to meet eminent personalities in the fields of pharmaceutics and learn about the latest technological advancements.

ConferenceSeries.com hosts 3000+ Global Events that includes over 600+ International Conferences, 1200+ Symposiums and 1200+Workshops and preconference workshops on diverse Medical, Pharmaceutical, Clinical, Engineering, Science, Technology, Business and Management fields. Over 25 Million visitors flock to our websites to observe the attest developments in these fields.

 

Why to Attend???

Nano Medicine 2018 Conference is a multidisciplinary program with broad participation with members from around the globe focused on learning about Nano Medicine and its advances. This is your best opportunity to reach the largest assemblage of participants from Nano Medicine community that is from academia, research entities, medical groups, related associations, societies and also from government agencies, pharmaceutical, biomedical and medical device industries.

Who should attend and Who You’ll Meet

Directors/Senior Directors/Executive Directors and Vice Presidents/Senior Vice Presidents/Executive Vice Presidents and Heads/Leaders/Partners of

·         Pharma R&D

·         CROs and CMOs

·         Clinical Research Sites

·         Pharma/Biotech and Medical Device industries

·         Hospitals, Associations

Medical Directors, Principal Investigators, Methodologists, and other clinical research professionals along with Academicians: University Faculties like Directors, Senior Professors/Assistant Professors/ Associate Professor, Research Scholars, scientists who are related to clinical and medical research. Students also participate at this event as student delegates and young research forum (YRF).

 

Market Analysis

The global market for nano medicine is potent to reach US$ 350.8 billion by 2025. As per the factsheets from WHO confirms that 8.2 million deaths are owing to different types of cancers with 15 million new cases in 2016-2017. Thus the demand for nano medicine to curb the death penalty from cancer is on the rise. An exponential market growth for nano medicine is expected during the coming years. However, the entire procedure of nano medicine from the lab to the market is a tedious and difficult process with stringent regulatory challenges to overcome. This is a major factor which restrains investors from investing into this area of pharmaceutical technology and rather nanotechnology.

Although the European region records the major 25% share of publications on articles on nano medicine but the North America dominated the ondustry in 2016 with a record revenue share of 42% of the total market. Nanoemulsions, Nanoformulations and Nanodevices are gaining more importance in the market due to their increased efficacy and potency. 

To Collaborate Scientific Professionals around the World

Conference Date April 18-19, 2018

For Sponsors & Exhibitors

sponsors@conferenceseries.com

Speaker Opportunity

Supported By

Journal of Nanomedicine & Nanotechnology Journal of Nanomedicine & Biotherapeutic Discovery Research & Reviews: Journal of Pharmaceutics and Nanotechnology

All accepted abstracts will be published in respective Conferenceseries International Journals.

Abstracts will be provided with Digital Object Identifier by